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Abstract

In fiscal interaction, a policy is evolutionarily stable if, once adopted by all governments,
jurisdictions that deviate from it fare worse than those that stick to it. Evolutionary stability is
the appropriate solution concept for models of imitative learning (policy mimicking). We show
that evolutionarily stable strategies implement identical allocations, regardless of whether
jurisdictions use tax rates or expenditure levels as their strategy variable. This is in contrast to
the observation that the allocations in the Nash equilibria of games played in tax rates or
expenditure levels differ from one another. With evolutionary play, jurisdictions set taxes and
expenditures competitively, i.e., they behave as if they were all negligibly small.

JEL-Codes: H770, H720, C730.

Keywords: tax and expenditure competition, finite-player ESS, policy equivalence.

Andreas Wagener
School of Economics and Management
University of Hannover
Koenigsworther Platz 1
Germany — 30167 Hannover
wagener@sopo.uni-hannover.de



1 Introduction

In economically integrated settings, jurisdictions at the same tier of a federation are
strategically linked: with mobile people, goods or factors, policies implemented in one
jurisdiction affect the economic performance in other jurisdictions, giving rise to fiscal
games. It is well-known that the choice of policy variable matters for the outcomes of such
games: even in simple settings where public expenditures are financed through a single
tax on a mobile tax base, the Nash equilibria of games where governments use tax rates
as their policy variable generate different allocations than equilibria where governments
operate with expenditure levels. For example, if governments tax-finance local public
goods, competition in expenditures is sharper than in tax rates: the provision levels of
public goods are lower in expenditure competition than in tax competition (Wildasin,
1988, 1991). Similarly, if governments tax-finance inputs that increase productivity in
local production, the provision levels in Nash equilibrium differ between the tax game and
the expenditure game — though it is unclear which type of competition is fiercer (Bayindir-
Upmann, 1998). For decentralized redistribution with mobile beneficiaries, equilibria are
different when governments choose transfer payments to the poor and when tax rates on
the rich as their instruments (Koethenburger, 2014).

The non-equivalence of policy instruments is important in a number of issues in fiscal fed-
eralism: for the necessity and desirability of policy coordination (Zissimos and Wooders,
2008), for the potential superiority of a policy mix over a single policy instrument (Haupt-
meier et al., 2012), for the effects and design of fiscal equalization schemes (Hindricks et
al., 2008; Koethenbuerger, 2011), for commitment issues in fiscal competition etc.

The discussion so far refers to Nash equilibria of fiscal games. This solution concept
presupposes that policies are set as best responses to other governments’ policies, where
“best” is measured in terms of jurisdictions’ own payoffs. Nash play requires complete
knowledge of the game (at least of the mapping from policies to payoffs).

In this paper, we depart from Nash play and study (finite-player) evolutionary stability
in fiscal competition. A policy is an evolutionarily stable strategy (ESS) if, once adopted

by all players, it cannot be successfully invaded by a small number of deviations to a



different policy (for a formal definition see Schaffer, 1988, or Section 3). The basic idea
of evolutionary stability in fiscal interactions is that more successful policies will, in quite
general dynamics, diffuse faster over time than not-so-successful policies and will eventu-
ally take over in the set of jurisdictions. Once achieved, an ESS is immune against rare
and single policy experiments (“mutations”) in the sense that mutant jurisdictions always
earn lower payoffs than the jurisdictions that stick with the ESS.

Evolutionary stability has recently been applied to games among governments (Sano,
2012; Wagener, 2013; Ania and Wagener, 2014; Philipowski, 2015). It can be motivated
in a variety of ways. First, evolutionary stability is the equilibrium prediction for games
played with the objective of maximizing relative payoffs. In models of fiscal interaction,
this captures yardstick competition, relative performance concerns, and policies motivated
by keeping up with other jurisdictions. Second and more importantly, evolutionary sta-
bility is a useful concept in models of imitative learning (see, e.g., Fudenberg and Imhof,
2006). Being an ESS is a necessary property for the rest points in a wide class of dynamic
processes that might arise in fiscal interaction: in finite-population games, the dynamics
of policy mimicry, imitate-the-best behavioral rules with occasional policy experimenta-
tion and various other types of learning, imitation, and diffusion will reach stability in
the long run only at evolutionarily stable strategies (for a survey, see Alos-Ferrer and
Schlag, 2010).! The empirical observation that jurisdictions often copy one another in
their policies and the Hayekian notion that federations are policy laboratories and fiscal
decentralization initiates discovery procedures for good policies anecdotally and theoreti-
cally suggest that fiscal interaction indeed works through imitation-and-experimentation
dynamics. In such cases, evolutionary approaches lend themselves to a belief-free analysis
of fiscal interaction, requiring from policy makers less than full rationality, understood as
payoff maximization with complete knowledge (and the use thereof) of the true economic
model, the mapping between policies and payoffs, and all other relevant information.

We compare the evolutionarily stable outcomes of fiscal competition when governments

!Evolutionary stability is necessary, but not sufficient for this dynamic property. For example, (only)
ESS that are strictly globally stable are the unique stable limit points of stochastic processes arising from

imitation and experimentation in finite-population games (Alds-Ferrer and Ania, 2005).



have access to two policy variables. We use two workhorse models of fiscal competi-
tion originating from Zodrow and Mieszkowski (1986): governments finance, by taxes on
mobile capital, the provision of a consumption good (Section 2) or of an input factor
into production (Section 3). For both scenarios, the Nash equilibrium allocations differ
when government set tax rates or when they set expenditure levels differ (Wildasin, 1991;
Bayindir-Upmann, 1998). By contrast, the allocations in the ESS of tax and expenditure
games do coincide (Results 2 and 3) — the choice of the policy variable, thus, is irrelevant.
In a nutshell, the intuition is as follows: in both models and for any number of jurisdic-
tions, evolutionary stability is tantamount to “competitive behavior”, i.e., to the Nash
equilibrium that would emerge if there were an infinite number of small, price-taking
jurisdictions.? Then, the impact of any jurisdiction’s policy choice on the economy-wide
allocation and on other jurisdictions’ payoffs is negligible. Whether governments set tax
rates or expenditure levels is immaterial — and the policy outcomes are therefore identical.
This finding should be contrasted with the outcomes in standard Nash play. There, the
common root for the non-equivalences of equilibria with different policy variables is that
different policy instruments, though linked through budget constraints or other forms
of invertible mappings, affect interjurisdictionally mobile items in different ways. This
gives rise to different fiscal externalities between jurisdictions which affect the efficiency
of policy outcomes differently. With evolutionary play, jurisdictions play competitively,
i.e., as if there were no spillovers to other jurisdictions at all. From that perspective,
alternative policy instruments are indeed equivalent.

The rest of this paper is structured as follows: Sections 2 and 3 analyzes fiscal interaction
when taxes on mobile capital go to finance, respectively, a government-provided consump-
tion good or a production factor. In all scenarios, the allocations at the evolutionarily
stable strategies of expenditure and tax games coincide. Section 4 briefly concludes. All

proofs are in the Appendix.

2Competitive behaviour is a common feature of ESS in models of fiscal competition (as well as in
various other finite-player settings). It implies that tax competition has most inefficient outcomes, at

least in the class of models considered here.



2 Tax competition with public consumption goods

2.1 (General description

We use the seminal framework of tax competition from Zodrow and Mieszkowski (1986,
Section 2), Hoyt (1991), and Wildasin (1988, 1991). In an economically integrated area
there is a finite number n > 1 of identical jurisdictions.? Each jurisdictioni € {1,...,n} is
inhabited by one representative immobile household who owns an unmodeled fixed factor
and a given amount of capital k£ > 0. Capital is costlessly mobile and can be invested at
home or in any other jurisdiction.

Each jurisdiction produces a single output y; (which serves as the numéraire), employing
the fixed factor and the capital, k;, invested in 7. Technology is represented by a production
function y; = f(k;), with f'(k) > 0 > f”(k) for all k£ > 0. To avoid uninteresting corner
solutions, we assume that f satisfies the Inada conditions f'(0) — oo and f'(c0) — 0.
Local output y; can be transformed into consumption, ¢;, or a government-provided good,
z;, at a marginal rate of transformation of one. Local governments finance the provision of
the government good with a proportional tax on the capital invested in their jurisdiction.
Denoting the capital tax rate in jurisdiction ¢ by t;, tax revenues in ¢ amount to t;k;.
Governments maintain balanced budgets; expenditures for the public good must equal

tax revenues:

Private consumption in jurisdiction ¢ emerges as output minus local taxes plus the repa-

triated return on net capital exports:

Welfare in jurisdiction ¢ = 1, ..., n is represented by a utility function (of a representative

individual, say) and depends on the consumption levels of the private and of the publicly-

3Zodrow and Mieszkowski (1986) originally model a purely competitive setup; in this specification
follows Hoyt (1991) and Wildasin (1998). Wildasin (1998) assumes that capital owners reside outside the
system of jurisdictions. This gives rise to different values for private consumption than below — without

affecting any of the results to come.



provided good:
u' = Ulci, 2;).

Here, U is strictly monotonically increasing in both arguments and strictly quasi-concave.
Partial derivatives of U are denoted through subscripts. We assume that both ¢ and z
are normal goods.*

As the marginal rate of transformation between ¢ and z is one, an efficient allocation in

the economy requires that, in every jurisdiction,’

7 UZ Ty~
b=k and el g (1)
Ue(ci, 2)
Due to the perfect mobility of capital, the net-of-tax return on capital will be equalized
across jurisdictions in a capital market equilibrium. With tax rates t = (t1,...,t,), a

capital market equilibrium is a distribution of capital (ki(t),. .., k,(t)) and an after-tax

return p(t) of capital such that:
Y ki(t)=mn-k and f'(ki(t)) —t;=p(t) fori=1,.. n (2)
=1

The comparative statics of the capital market equilibrium are straighforward:® higher
taxes in jurisdiction ¢ lead to an outflow of capital from there (0k;/0t; < 0), to an inflow
of capital into other jurisdictions (0k;/0t; > 0), and to a drop in the equilibrium of return
(Op/0t; < 0).

4 Formally, U,,U.~U.,U, < 0and U..U,—U,..U,. < 0. This assumption ensures that (U, /U..)/0z < 0.
®An efficient outcome is obtained by solving, for any non-negative weights (A1, ..., \,),

CiyZiyki

max Zx\iu(ci,zi) s.t. Zki =nk and Z(f(kb) —zi—¢;) > 0.

Production efficiency (f'(k;) = f'(k;)) then requires k; = k; = k. In an equal-treatment allocation, the

¢; and z; in (1) would be equal across jurisdictions; (1) still allows for interjurisdictional transfers.
6They can be obtained from (2) via the Implicit Function Theorem. Specifically, for all i and j # 4,

Ok:i(t) 1 1/ f"(k:)

ot [k (1 C Yha 1/f”(kh)) =%
ohi(t) 1 -
ot Pk 7 (k) ey 1/ 1 () —
folt) _ _ ! <0

ot f(ki) Yoy L (k)



2.2 Tax vs. expenditure game

Given t and attending capital allocation (ky(t),. .., k,(t)), the tax revenues of jurisdiction
i at tax vector t are T;(t) := ¢;k;(t). In vector notation, governments’ budget constraints

can be written as:
z = T(t). (3)

We henceforth assume that the mapping T : t — z is invertible at any t: for every
z, there exists tax vector 7(z) = (71(2),...,7,(z)) such that z = T(7(z)). The partial
derivatives dr;/dz; and d7;/dz; measure the changes in tax rates that are necessary in,
respectively, jurisdictions ¢ and 7, to keep all budgets balanced when jurisdiction ¢ changes
its expenditure level (see Appendix A.1 for details).

When choosing policies, governments care for the utility of their representative citizens and
take into account that capital relocates upon policy changes. With respect to government’s

strategy variable, we distinguish between tax games and expenditure games.

e Tax game: Each government chooses its tax rate t;, taking the tax rates t_; of the

other governments as given and taking into account that

ci = c¢i(t) = f(ki(t)) — tiki(t) + p(t)(k — Ki(t)),

In a tax game, jurisdiction 7’s payoff at taxes t and the attending capital market

equilibrium can be expressed as
m(tit) = U (f(ki(t) — tiki(t) + p(t) (k — ki(t)), tiki(t)) - (4)

e Expenditure game: Each government chooses its expenditure level z;, taking the
expenditure levels z_; of all other governments as given and taking into account

that



In an expenditure game, jurisdiction i’s (absolute) payoff at expenditure levels z

and the attending capital market equilibrium can be expressed as

(z52-) = U (f(ki(7(2)) — 7(2)ki(7(2)) + p(7(2))(k — ki(7(2)), i) . (5)
With identical jurisdictions, payoff functions (4) and (5) are symmetric: payoffs do not de-
pend on a jurisdiction’s index and are invariant to permutations of the other jurisdictions’

strategies.

2.3 Solution concepts

As all games in this paper are symmetric, we focus on symmetric outcomes. Let us

recall the definitions of symmetric Nash equilibrium and (finite-population) evolutionarily

stable strategy (ESS) for a generic, symmetric n-player game with strategies x, individual
[P}

strategy sets X, and payoff functions 77(x); in our application, “z” is meant to indicate

a tax game (x = t) or an expenditure game (z = 2).
Definition 1 Suppose, a finite-player x-game is played (with v =t,z).
o A strategy 2V € X is played in a symmetric Nash equilibrium of if

(N N ™) > (N, 2N) forallz € X

o A strategy 2 € X is said to be an evolutionarily stable strateqy (ESS) if

o (a¥m, 2P 2 > (a2, 2F) for all x € X.

In a Nash equilibrium no jurisdiction would earn a higher absolute payoff from a deviation,
given the policy choice of the other jurisdictions. At an evolutionarily stable profile no
jurisdiction can gain a strict relative advantage over the other jurisdictions by deviating;
the payoff comparison is between a (single) deviator, who chooses policy x, and the non-
deviators, who all stick to z%.

The ESS can be understood as the Nash equilibrium when governments care about their

relative performance (Schaffer, 1988). Formally, an ESS is a strategy z¥ such that

zf = arg max [Wm(x;:pE,...,atE) —Wx(xE;x,xE,...,xE)} : (6)
BAS



A finite-population ESS generally is not a Nash equilibrium strategy of the “absolute”
game (for a discussion, see Hehenkamp et al., 2010). Deviating from a Nash equilibrium
may pay off in relative terms even if it goes along with a reduction in (absolute) payoffs.
Sano (2012), Wagener (2013) and Philipowski (2015) have shown that in tax rate compe-
tition (i.e., for the tax games discussed here and in Section 3) Nash equilibria and ESS
do indeed differ significantly, the latter leading to competitive behavior. Below we show
that the same holds for expenditure games, implying that, while Nash equilibria differ

between tax and expenditure games, the ESS are the same.

2.4 Symmetric situations

Let us introduce some special notation for symmetric situations. When all jurisdictions
set the same tax rate (i.e., if t = (¢,...,t) for some t), then k;(t) = k for all i. Attending
are levels of private consumption, ¢(t), and of public consumption, g(t), that are identical

across jurisdictions, but that vary with ¢. They are given through

ét) = f(k) —tk and Zz(t) = tk. (7)
We denote by

MRS(t) := % (8)

the marginal rate of substitution between private consumption and public good at a sym-
metric tax vector with rate t. Observe that M RS(t) only depends on ¢ (and parametrically
on k), but not on n.

A symmetric expenditure vector (z; = z for all i) can be financed by symmetric tax rates:
t; = z/k for all i. Given the invertibility of T, this solution is unique. Again, if all
jurisdictions provide the same level of z, they attract the same amount of capital, k. For
symmetric expenditure vectors z = (z,...,2) denote by 7(2) = z/k the symmetric tax
rate that would finance 2z everywhere.

Starting from a symmetric tax vector, the changes in the capital market equilibrium if

one jurisdiction, say i, slightly changes its tax rate are given by

Ok; 1 ( 1 ok; 1

ot; (k) b= ﬁ) <0 and at; — nfr(k)

>0 (9)

8



for all 7 # j. As shown in Appendix A.1, with symmetric expenditures a marginal change
in jurisdiction i’s provision level necessitates the following changes in tax rates to keep all

budgets balanced:
Ti _ kf” (k) and 2 kIR (10)

% k(14 ) % k(1 )

We will henceforth assume that

—kf"(k) > T

always holds. This ensures that % >0 > 2.

: 5 1f a jurisdiction wishes to raise its
1 T

expenditures it has to increase its tax rate — while other jurisdictions can lower their tax

rates (which appears plausible, given that they experience an inflow in capital).

2.5 Nash equilibria

As shown in Appendix A.2, symmetric Nash equilibria of tax and expenditure games

satisfy, respectively,

MRS(Y) = (1+ ~ (1—1»1 (11)

i T )
MRS(r(:V)) = (1+%>(1+1;5Z2)) . (12)

Result 1 The Nash equilibria both of the tax and expenditure game involve under-provision
of the publicly provided good. This under-provision is more pronounced in the expenditure

game:
(V) <t and 2N < 2(tV). (13)

For additively separable utility functions, (13) has already been shown by Wildasin (1988).
Result 1 generalizes this to welfare functions where private and public consumption are

normal goods.

2.6 Evolutionary stability in tax and expenditure games

Or main result shows that the ESS in tax and expenditure games coincide and are inde-

pendent of how many jurisdictions there are:

9



Result 2 For an ESS of both the tax and the expenditure game, it holds true that
B N\
MRS(t") =14+ ——— 14
=+ i) .

independently of the number, n, of jurisdictions. Hence,
tf =71(2) and =z(t¥) =¥,
From Result 2, an ESS in fiscal competition has the following properties:

e Whether the game is played as a tax or an expenditure game, the allocations at an
ESS are the same. This should be contrasted with Result 1 which shows that with

Nash play the outcomes of tax and expenditure games differ.

e Observe that for n — oo, conditions (11) and (12) are identical and coincide with
(14). The first observation — that for the “competitive” setting with a very large
number of jurisdictions the Nash equilibria of tax- and expenditure games are iden-
tical — can already be found in Wildasin (1998, p. 238). The second observation
conveys that ESS in fiscal games is identical to competitive behavior. The intuition
is as follows: if n gets large, jurisdictions can act as price-takers in Nash play, per-
ceiving themselves (correctly) as not having any impact on the equilibrium rate of
return, p. Likewise, with evolutionary play (= relative payoff maximization), effects
on p are irrelevant as they are common to all jurisdictions and do not alter relative
positions of jurisdictions; this holds regardless of the number of jurisdictions. Hence,

“competitive” Nash play and evolutionary play entail the same rationale.”

e Compared to Nash play (conditions (11) and (12)), evolutionary play severely ex-
acerbates the under-provision problem. This is can be intuitively understood by
recalling that finite-player ESS are Nash equilibria of games played with relative
performance concerns (see (6)). Such concerns involve a motive of spite: improving
one’s own relative standing can also be achieved by harming others — which happens

through tax or expenditure cuts (for details see Wagener, 2013).

"This result is in line with observations in the literature on oligopoly. For example, the ESS in
Cournot games coincides with the Walrasian (= price-taking, competitive) outcome (see Vega-Redondo,

1997; Alos-Ferrer and Ania, 2005).

10



3 Tax competition with publicly provided inputs

So far, tax revenues went to finance the provision of a consumption good. Zodrow and
Mieszkowski (1986), Bayindir-Upmann (1998), or Dhillon et al. (2007) discuss scenarios
where tax revenues finance a publicly provided input. It is then unclear whether tax
competition triggers an under- or an overprovision of the public input. This makes fiscal

competition with public inputs an interesting object of study also for evolutionary play.

3.1 The model

As before, there are n > 1 identical jurisdictions, each inhabited by an immobile house-
hold who owns the fixed factor and some fixed amount of mobile capital & > 0. The
numéraire output y; in each jurisdiction can, at a unit marginal rate of transformation,
be used either for consumption, ¢;, or as a publicly provided input into production, z;
(say, infrastructure). Technology is then represented by a strictly quasi-concave produc-
tion function y; = f(k;, z;) with positive, but decreasing marginal productivities of both
capital and the publicly provided input (fx(k, 2), f.(k,2) > 0 and fix(k, 2), f..(k,z) < 0).
The Inada conditions are assumed to hold.

As before, government expenditures are financed through a source tax on capital. Gov-

ernment i’s budget constraint requires ¢;k; = z;. Consumption is given by
¢ =y — tiki + p(k — k;),
and the no-arbitrage condition implicitly defines equilibrium rate of return on capital, p:
fr(kiy z;) —t; = p  for all 4. (15)

The representative household only cares for consumption. Benevolent governments, thus,

pursue the maximization of ¢; as their policy objective: m; = ¢;.

11



An efficient allocation in this economy requires that, in every jurisdiction,®

ki=k and z =2", where 2* solves f,(k,z*) = 1. (16)

3.2 Tax and expenditure games

We again distinguish between tax and expenditure game:

Tax game: Governments set tax rates, and financial resources for z; are determined by
balancing the budget. Replacing z; by t;k; in (15) and obeying the requirement that all
capital be invested somewhere in the economic area (3. k; = n - k), the capital market
equilibrium can be expressed as a function of tax rates t = (¢1,...,t,): ki = k;(t) and

p = p(t). Government payoffs in a tax game emerge as

m o= (tit—s) = f(ki(t), tiki(t)) — tiki(t) + p(t) - (k — kq(t)). (17)

For symmetric tax vectors t = (¢,...,t), such that k; = k everywhere, we define shortcuts

AYt) == frn(k,th) +t- fr.(k,tk) and B'(t) :=k- fr.(k, tk) — 1.

For symmetric t, comparative statics under the condition that government budgets bal-

ance are given by:”

8!@1 . _TL -1 Bt(t) and 81{:]

ot n Al ot

1
n

(18)

Higher taxes in a jurisdiction will decrease the amount of capital invested there and,

consequently, increase the amount of capital elsewhere if and only if B'(t)/A'(t) < 0.

8 An efficient outcome solves
S o= S (ki) —2) st S ki =nk.
max i Ci i(f( i) %) — 2i) S b n

Production efficiency (f'(k;) = f'(k;)) then requires k; = k; = k.
9For arbitrary tax vectors, define shortcuts Al = frp(ki,tiki) + ti + frz(kistik;) and B = k; -

frez(kiytik;) — 1 for i = 1,...,n. Then comparative statics are as follows:

oki(t) B sy
ot; A?f ZZ:1 ALZ

(where 7 # j). The symmetric case follows easily.

Ok;(t) Bj

and = o
0t AJAL Sy A%‘,

12



The reason why the effect is ambiguous is that higher taxes reduce the after-tax return on
capital but also allow for higher levels of public inputs, which might enhance the marginal

productivity of capital.

Expenditure game: Governments set expenditures z;, and the tax rates to finance z;
then emerge from the budget constraint as t; = z;/k;. Replacing this in (15), the capital
market equilibrium can be expressed as a function of expenditures z. Government payoffs

in a tax game, w7 = ¢; emerge as

T =1 (2i2-0) = [(ki(2), 2:) — 2 + p(2) - (k — ki(2)). (19)
We focus on symmetric policies (z; = z and k; = k for all i) and define shortcuts

A% (2) == kf(k,2) + = and B*(2) = kf.(k,2z) — 1.

ERTIRS

For symmetric z = (z,..., z), comparative statics under the condition that government

budgets balance are given by:!°

ki n—1 B*(z) q 1
0z n  A*(z2) o 0z n A (z)

(20)

Higher expenditures in a jurisdiction will decrease the amount of capital invested there

and, consequently, increase the amount of capital elsewhere if and only if A*(z)/B*(z) < 0.

3.3 Nash equilibria

It is well-known that the Nash equilibria of tax and expenditure games implement different
allocations. Specifically, symmetric Nash equilibria of tax game (¢; = ¢V for all i) and

expenditure game (z; = 2V for all 7) satisfy, respectively,

tNf(k tVk) n—1 B'(tY)

fz(/%7tNl_f) -1 = L . AL(tV)
L BNy o)
e = BU(Y) /AN
- N 2N n—1 B*(zV)

10For arbitrary, non-symmetric tax vectors, an analogous description as in the previous footnote applies.

13



(also see Bayindir-Upmann, 1998, eqs. (12) and (18)). These conditions generically do

not coincide. Hence, in general
N LN k. (23)

Depending on whether B*/A® is positive or negative, conditions (21) and (22) indicate
under- or over-provision of the publicly financed input in the tax game (z = t) or the
expenditure game (z = z); both outcomes can arise in either game (Bayindir-Upmann,
1998, Props. 4.1 and 4.2).

A knife-edge case where the Nash equilibria of tax and expenditure game coincide arises
if B!(tY) = 0 or, which is the same, if B*(2) = 0. From (21) and (22), the alloctions in

these Nash equilibria are efficient: f.(k,z) = 1 (also see Appendix A.7).

3.4 Evolutionary stability

To derive the ESS, we proceed as in Section 2.6. In Appendix A.6 we show that the ESS

of the tax game, t¥, and of the expenditure game, 2%, satisfy, respectively,

e BRAGE)
R =1 = (24)
Rk -1 = 2L (25)

These conditions convey a number of (by now familiar) messages:

e First, observe that conditions (24) and (25) do not depend on n: in either game,

the ESS is the same, regardless of the number of jurisdictions.

e Moreover, the ESS conditions equal the respective conditions (21) and (22) for Nash
equilibria if n — oo. L.e., evolutionary stability is, both in the tax and the expendi-
ture game, identical with playing “competitive” Nash equilibria. Compared to fiscal
competition with Nash play, inefficiencies are, thus, exacerbated. In contrast to the
framework in Section 2, inefficiency here may imply over-provison of government
goods (i.e., too high tax rates). Evolutionary play, thus, does not only accelerate

races-to-the-bottom, it also speeds up races-over-the-top.

14



e In the knife-edge case where Nash equilibria (of tax and expenditure game) lead to
efficiency, the ESS in either game coincides with the Nash equilibrium — and also

implements an efficient allocation.!

Most importantly in our context, conditions (24) and (25) are in fact equivalent:

Result 3 In fiscal games where tax revenues go to finance production factors, the alloca-

tions at the ESS for tax and expenditure games coincide:
th =k 2P

For the tax-financed provision of production inputs, Result 3 and its contrast with (23)

convey the same message as Result 2 for the tax-financed provision of consumption goods.

4 Concluding remarks

In simple tax competition games the choice of the strategy variable does not matter in
evolutionary play. “Simple” refers to games where vectors of potential policy variables are
linked by a one-to-one mapping, in our examples reflected in the collection of government
budget constraints.

This observation is driven by the fact that evolutionary play leads to competitive, aggre-
gate-taking behavior in fiscal competition. From such a “small jurisdiction”-perspective,
no government perceives its policy to impact on other jurisdictions’ payoffs or the equi-
librium rate of return in capital markets. This renders all domestic policy instruments
equivalent. By consequence, with evolutionary play, all policy issues that arise from the
non-equivalence of Nash equilibria in interjurisdictional games played with different vari-
ables (see Section 1) cease to matter.

Our results clearly do not imply that the choice of the policy variable never matters in
evolutionary play for any type of fiscal interactions. We deliberately confined the analysis

to seminal workhorse models of tax competition. This basic framework has undergone

HUTf ¢ solves (21) with BY(t) = 0, the same t also solves (24). This reasoning analogously applies to
(22) and (25). Corollary 2 in Hehenkamp et al. (2010) proves that the property that the identity of Nash

equilibrium and ESS implies efficiency in fact holds generally in symmetric games.
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many interesting modifications and extensions. If and how the choice of strategy variable

matters in evolutionary in these variants is an open question for future research.
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Appendix

A.1 Derivation of (10)

For the invertibility of (3), we assume that the Jacobian determinant of T(t) is non-zero
for all t that we consider. Suppose that 7(z) is such that 7;(z) - k;(7(z)) = 2; for all 7. If
governments marginally change their provision level of z by dz, this requires tax rates to

change as follows
dr = J;!(7)dz, (26)

where Jx(t) is the Jacobian matrix of T, evaluated at tax vector t:

ory Ty
oty Tt Oty

A )
Ty, Ty,
oty T Oty

where % =k +t g’:? and % = tj% (where ¢ # j). Evaluated at a symmetric t, Jr

takes the form

a+b b b
b a+b ... b
Jr =
b b ... a+b

with a := k +t <%t(it) — %é_”) and b = t%tit). Verify that (direct calculation can be

done by using Sherman-Morrison formula):

a+ (n—1)b b b
-1 1 —b a+(n—1)0b ... —b
T a(a+nb) :
—b —b ooa+(n—1)
Using (9) we obtain:
2 t
A ) Pt
0z a(a + nb) (k + f,,(k))
t
aTj 1/ - b m
= JT (]72) = = 71 t \?
0z; ala+nb)  k(k+ 5)
resulting in (10). O
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A.2 Derivation of (11) and (12)

Tax game: Jurisdiction ¢’s best response in a t-game is implicitly given by
ot (ti;t_;) dp - ok;
at; L ot
where all functions are evaluated at t. With symmetry (¢; = ¢V and, consequently, k; = k
for all i), rearranging terms leads to (11).

Jurisdiction ¢’s best response in a z-game is implicitly given by

O (zi;2-i) o - or; B
0—zi — _Uc(kz_a_ti'u{:_k‘z)) azl—'_Uz—Oa

where all functions are evaluated at 7(z). With symmetry, rearranging terms leads to

(12). 0

A.3 Proof of Result 1

For t, define
1 1+ %+
and b(t) = 1—16{5(]6)
Tw®

t) =
al?) 1+Ef+®(1—l)

Observe that a(t) increases in t:

Moreover, observe that

%kff( )) - (H kf’f(k)) (H kf'f(k) (1 - %>>

a(t) > b(t) <= (1
1

— which always holds.
Nash equilibria of tax and expenditure game satisfy, respectively, M RS(t") = a(t") and
MRS(7V) = b(T"). Observe that

dMRS(t)  k

UcUzz - UcUcz + UzUcc - UzUcz) < 07

dt U_g(

where the derivatives of U are evaluated at ¢(t) and z = tk. To obtain the above expression

we used (7). The sign follows from the normality of both goods (cf. footnote 4).
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We prove the proposition proper by contraposition. Suppose that t& < 7V. Then:
b(tN) = MRS(™™) < MRS(t") = a(t") < a(V)

— which violates the fact that a(t) > b(t) for all ¢. Hence, a contradiction. Consequently,
tV > 7N must hold.

To prove inefficiency, recall that an efficient provision level z* satisfies MRS = 1. In a
symmetric Nash equilibrium we have MRS (t") > 1. Normality of ¢ and z then implies
2(tV) < 2~ O

A.4 Proof of Result 2

For the tax game, Result 2 in Wagener (2013) shows that an ESS satisfies (14). We
therefore confine ourselves to the ESS in the expenditure game. Recalling (6), the payoff
difference between a jurisdiction that deviates from a common strategy and a jurisdiction

that sticks with it in an expenditure game amounts to
V(2,2 =% (22, 7)) — 7% (2%[2, 7)),

where, given z, 2’ € Z, we define vectors

7'z, = (2:7,...,7) and Z*[z,7] = (¢;2,7,...,72).

Following Tanaka (2000), a strategy z¥ is an ESS if and only if it solves the problem
/
rgleazxw(z, 2.

for 2/ = 2F ie., iff 2F = argmax,cz (2, 2F). For the expenditure game,we get

U(2,2) = U (f(ki(r(2") — 2k (7(2")) + p(7(2") (k — ki (7(2")), 2)
—U (f(ka(7(2%) — 72(2*) ko (7(2%)) + p(7(2")) (k — ka(7(27)), 2') . (27)
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Observe that p(7(z')) = p(7(z?)). To find the maximum of (27), we partially differentiate

) with respect to z. Using the Envelope Theorem, we obtain:!?

WD gy (- 20D ). i)

0z oty dz
ok op(T(z%)) - dry(z?)
2 ' A op\T\z")) . )
U2 | (k) —ta = p) T2 — bt LEE (f =) | -

=0

1'— 22 and k; = ky = k. Moreover,

At a symmetric profile (with z = 2’), we have z
¢t = 2 = f(k) — 2 and the marginal utilities U? and U! coincide as they are both
evaluated at (f(k) — 2/, 2'). Hence,
(2, )
0z

d d
T1 ’FQ):UZ_UC._—7
le le k' (]. + kf"( ))

where we used (10). Equating this to zero, gives (14) — as in the ESS of a tax game.

= U, — Uk(

Moreover, observe that n does not show up on either side of (14). U

A.5 Derivation of (21) and (22)

First consider the tax game. Best responses are characterized by:

ort Ok; dp Ok;
0_&¢_<ﬁ_t %% k+&w m+ﬁ0w¢&)

op Ok;
= —k+ k—k; 2| ki 4+t
T, i, F = k) + ( ML )
In a symmetric Nash equilibrium (¢; = ¢V for all i), this condition holds at k; = k. Using

(18) gives (21).

Next consider the expenditure game. Best responses are implicitly defined through:

oni ok; ap ok;
0= 0z f: 8ZZ(k ki) = p@zi
. Zi 8/{;1 8p =
‘*ﬂ—1+Eagﬂm%‘“)

In a symmetric Nash equilibrium (z; = 2 for all i), this condition holds at k; = k. Using

(20) gives (22). O

1 2
12WWe write w and w as the derivatives of p with respect to, respectively, the first com-
1 2
ponent of 7(z') and the second component of 7(z?). The numerical values of these derivatives are, of

course, the same since p(1(z?) = p(7(z').
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A.6 Derivation of (24) and (25)

The proof of (24) can be found in Wagener (2013). Therefore let us briefly sketch the
proof of (25). We proceed as in Section A.4 and use the same notational conventions.

Define payoff differentials between a mutant and a non-mutant jurisdiction as

Vi(z,2) = fki(z)),2) — 2 = f(ka(2%),2) + 2 + p(2") - (ka(2®) — Ku(2"))

(recall that p(z') = p(z?)). Partial differentiation with respect to z yields:

% = —1+ fu(ki(z"),2) + apégzl) (ks — k1)
Hlha(2),2) = plz)) - D (fulh(a?), 2) — pla) - O,

At a symmetric profile (z = 2’), we have z' = 2z, k; = ky = k, and t; =ty = z/k. Since
an ESS z¥ maximizes ¢*(z, 2¥), it satisfies

E
_ Py, 2 Ok Oka
1+fz(k’z)+l§; (82 o =0.

With (20), this yields (25). O

A.7 Proof of Result 3

The strategy of the proof is to derive conditions such that the allocations in the symmetric
Nash equilibria of tax and expenditure game coincide (recall that the ESS is a Nash
equilibrium for n — co). Suppose that 2 = tVk in the solutions of (21) and (22). Then,
the expressions on the LHS of (21) and (22) coincide — and the expressions on the RHS
must be equal, too. Moreover, B*(tk) = B*(t) for all t with tk = z. Hence,

N

N Azézv/z;) g j/;tgj))/m(w)
7 nott _
- n?z 1t£NAt(tN) - B'(t") = nﬁ 1% “(tVEk)
nqi 1% (for +tV fre) = kfra + 1= %ti]v (kfkk + %)
L (F ek )~ 1) =0 8)
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Here, all derivatives of f are evaluated at (k, 2"). Condition (28) generally does not hold
(confirming the generic non-equivalence of Nash equilibria in tax and expenditure games).

However, there are precisely two cases where it holds:

(i) m — oo: This is the competitive scenario which, from Result 2, coincides with the

ESS. Hence, tk = 2%, as claimed in Result 3.

(ii) kfr.(k, 2N) = 1 or, equivalently, B*(z") = B!(t") = 0: In this scenario, the Nash
equilibria both of the tax and the expenditure game are efficient. This validates
the remarks on the “knife-edge case” in Sections 3.3 and 3.4. Here Nash equilibria,

ESS and efficient solutions are identical.
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