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1. Introduction

The expected-utility (EU) approach entails great richness to deal with decision making in a large vari-
ety of stochastic environments. Research in the EU-paradigm often starts from plausible assumptions
on risk preferences or optimal responses to changes in the risk structure, and then investigates how
such assumptions are reflected by properties of the von-Neumann-Morgenstern (vNM) utility func-
tions underlying the EU concept. Building on Pratt (1964)’s analysis of risk aversion, several measures
for risk attitudes have been analyzed, including absolute prudence and temperance (Kimball, 1990;
Eeckhoudt et al., 1996), their relative and partial relative counterparts (Choi et al., 2001; Honda,
1985) as well as extensions such as mixed risk aversion (Caballé and Pomansky, 1996).
The two-parameter, mean-variance specification of risk preferences certainly counts among the most
popular approaches towards decision making under uncertainty within both economic theory and
practical applications. In this approach, utility from a lottery is represented by a function (only)
of the first and second moments of the distribution of payoffs (income, say). Since its earliest days
(Markowitz, 1959, pp. 286-288), (µ, σ)-analysis has always been recognized as deficient, relative to
the EU approach: It is only consistent with the EU approach for quadratic utility functions (Baron,
1977) or if all random variables are jointly elliptically distributed (Chamberlain, 1983). As shown by
Owen and Rabinovitch (1983), the latter condition holds if all attainable distributions differ only by
location and scale parameters — which, as Meyer (1987) and Sinn (1983) argue, covers a wide range
of economic decision problems.
When (µ, σ)- and EU-approach are perfect substitutes, a number of formal correspondences between
them can be identified. Meyer (1987) translates the measures of absolute and relative risk aversion
and their monotonicity properties from the EU approach into the two-parameter framework. Lajeri
and Nielsen (2000) and Eichner and Wagener (2003a) derive a (µ, σ)-equivalent for Kimball (1990)’s
notion of decreasing absolute prudence. Yet, the two-parameter approach is still lagging behind the
progress made in the EU-framework.1 This paper tries to narrow the gap.
For all absolute measures of risk attitudes used in the EU framework we define (µ, σ)-analogues in
the form of marginal rates of substitution between µ and σ for the two-parameter utility function
or its derivatives (Section 3). We show that the monotonicity properties of these (µ, σ)-measures
with respect to µ and σ coincide with the monotonicity properties of, respectively, the corresponding
absolute EU-measure and of the corresponding partial relative EU-measure (Section 4).
In Section 5 we discuss the case of normally distributed stochastics. We present slightly different
(µ, σ)-measures for risk attitudes and show that they are equivalent to our previous ones for Gaussian
stochastics. This finding has an interesting repercussion to the EU-approach: There, indirect (or
derived) utility functions sensu Kihlstrom et al. (1981) inherit important properties such as decreasing
absolute risk aversion or prudence from the original utility index, while the converse is generally not
true. Our results show that the converse does indeed only hold for Gaussian stochastics.

2. Notation and preliminaries

Following Meyer (1987), we consider a choice set Y of random variables (lotteries) that have support
in a (possibly unbounded) interval Y of the real line and that only differ from one another by location
and scale parameters. I.e., if X is the random variable obtained by normalization of an arbitrary
element of Y, then any Y ∈ Y is equal in distribution to µy +σyX, where µy and σy are the mean and
the standard deviation of the respective Y . By M := {(µ, σ) ∈ R × R+|∃Y ∈ Y : (µY , σY ) = (µ, σ)}
we denote the set of all possible (µ, σ)-pairs that can be obtained for Y ∈ Y. We assume that M is a
convex set.

1To be sure, as the two-parameter approach is less general than the EU-approach, it cannot deal with all the questions

amenable to the EU-framework.
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Let u : R → R be a vNM utility index; for simplicity we assume that u is a smooth function. Then the
expected utility from the lottery Y can be written in terms of the mean and the standard deviation
of Y as:

Eu(y) =
∫
Y

u(µY + σY x)dF (x) =: U(µY , σY ) (1)

where F is the distribution function of X. Recall that the mean and the standard deviation of X are,
respectively, zero and one by construction.
It is evident from (1) that u(y) is increasing for all y ∈ Y if and only if U(µ, σ) is increasing in µ for
all (µ, σ) ∈ M. Furthermore, the following relationships hold for all n ∈ N:2,3

u(n+1)(y)
<

>
0 ∀y ∈ Y

⇐⇒ ∂ n+1U(µ, σ)
∂ µn+1

<

>
0 ∀(µ, σ) ∈ M (2a)

⇐⇒ ∂ nU(µ, σ)
∂ σ∂ µn−1

<

>
0 ∀(µ, σ) ∈ M (2b)

⇐⇒ ∂ n+1U(µ, σ)
∂ µn+1

· ∂ n+1U(µ, σ)
∂ σ2∂ µn−1

−
(

∂ n+1U(µ, σ)
∂ σ∂ µn

)2
>

<
0 ∀(µ, σ) ∈ M. (2c)

From (2a), the monotonicity properties of U with respect to µ are reflected by the monotonicity prop-
erties of u with respect to y. Analoguous equivalences exist for Uµ and u′, and so forth. Eq. (2b)
shows that the sign of u(n) is identical to that of the (n−1)-st derivative of Uσ with respect to µ. This
will play an important role below. Finally, (2c) identifes the curvature properties of ∂ n−1U/∂ µn−1 as
being determined by the curvature of u(n−1) (i.e., the monotonicity of u(n+1)). For n = 1 this appears
already in Meyer (1987) who shows that U(µ, σ) is concave iff u′′(y) < 0. Meyer’s proof for that case
can be readily adapted to confirm (2c) for larger n.

3. Measures of risk attitudes

Given a vNM-function utility index u, a prominent class of absolute measures of risk attitudes in the
EU-approach is defined by

Bn(y) := −u(n+1)(y)
u(n)(y)

(3)

(y ∈ R, n ∈ N). B1(y) is the Arrow-Pratt measure of absolute risk aversion, while B2(y) and B3(y) are,
respectively, the measure of absolute prudence due to Kimball (1990) and the measure of absolute
temperance introduced by Eeckhoudt et al. (1996). The still nameless Bn of higher-order play an
important role, e.g., in the concept of mixed risk aversion (Caballé and Pomansky, 1996) which in
turn has interesting implications for comparative statics. For y, z ∈ R and n ∈ N further let

Pn(y, z) := −z · u(n+1)(y + z)
u(n)(y + z)

. (4)

2For integers n ∈ N0, f (n)(x) denotes the n-th order derivative of f(x); by convention f (0)(x) ≡ f(x). In multi-

variable functions, subscripts denote partial derivatives.
3To obtain equivalence (2b), note that by definition and integration by parts we get

∂ nU(µ, σ)

∂ σ∂ µn−1
=

∫ ∞

−∞
xu(n)(µ + σx)dF (x) = −

∫ ∞

−∞

(
u(n+1)(µ + σx)

∫ x

−∞
zdF (z)

)
dx,

where the inner integral is always negative due to Ex = 0.
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For n = 1 this yields partial relative risk aversion as introduced by Menezes and Hanson (1970).
Cheng et al. (1987) employ properties of P1 to characterize comparative static results in the EU-
framework. We identify P2(y, z) and P3(y, z) as, respectively, partial relative prudence and partial
relative temperance, which also play important roles in comparative statics; see Choi et al. (2001) for
P2 and Honda (1985) for P3. Let us further define

βn(µ, σ) := −∂ nU(µ, σ)
∂ σ∂ µn−1

/
∂ nU(µ, σ)

∂ µn
. (5)

β1 is the marginal rate of substitution between µ and σ for utility function U . Meyer (1987, Property 5)
shows that this MRS is the two-parameter equivalent of the Arrow-Pratt measure B1 of absolute risk
aversion. For higher values of n, similar analogies will be given in Proposition 1 below.

4. The monotonicity properties of Bn and βn

Proposition 1. For all n ∈ N:

B′
n(y)

>

<
0 ∀y ∈ Y ⇐⇒ ∂ βn(µ, σ)

∂ µ

>

<
0 ∀(µ, σ) ∈ M; (6a)

∂ Pn(y, z)
∂ z

≥ 0 ∀y ∈ Y ⇐⇒ ∂ βn(µ, σ)
∂ σ

≥ 0 ∀(µ, σ) ∈ M. (6b)

Proof: We only show (6b) since (6a) can be proved by the same technique. Proofs of (6a) for n = 1, 2
can be found in Meyer (1987) and Lajeri and Nielsen (2000). Calculate:

∂ βn

∂ σ
≥ 0 ∀ (µ, σ)

⇐⇒ ∂ (n+1)U

∂ σ2∂ µ(n−1)
· ∂ nU

∂ µn
− ∂ (n+1)U

∂ σ∂ µn
· ∂ nU

∂ σ∂ µ(n−1)
≤ 0 ∀(µ, σ)

⇐⇒
∫

x2u(n+1)dF (x)
∫

u(n)dF (x)−
∫

xu(n+1)dF (x)
∫

xu(n)dF (x) ≤ 0∀ (µ, σ)

⇐⇒
∫

σx2 u(n+1)u(n)

u(n)
∫

u(n)dF
dF −

∫
σx

u(n+1)u(n)

u(n)
∫

u(n)dF
dF

∫
x

u(n)∫
u(n)dF

dF ≤ 0∀ (µ, σ)

⇐⇒ −EG(x · Pn(µ, σx)) + EGPn(µ, σx) ·EGx ≤ 0 ∀ (µ, σ)

⇐⇒ CovG(x, Pn(µ, σx)) ≥ 0 ∀ (µ, σ)

⇐⇒ ∂ Pn(µ, z)
∂ z

≥ 0 ∀µ, z

where we set z ≡ σx and the argument of u is always (µ + σx). The first of these equivalences
comes from differentiating βn. In the second we used (1). The third follows from premultiplying
with σ/(

∫
u(n)dF )2 > 0. To obtain the fourth, we used the distribution function G defined by

dG = (u(n)/
∫

u(n)dF )dF ; EG denotes the expectation operator with respect to G. The fifth equiva-
lence is by definition, the final one is due to Chebyshev’s inequality. �

Both parts of Proposition 1 have interesting implications. We first comment on (6a):

Remark 1. Eq. (6a), combined with (2a) and (2b), states that βn can be used in the two-parameter
approach as the analogue for Bn in the EU approach: The measures coincide both in sign and in
monotonicity properties. Hence, β1, β2, and β3 reflect and, conversely, are reflected by absolute risk
aversion B1, absolute prudence B2, and absolute temperance B3, respectively. Decreasing absolute
risk aversion [prudence, temperance] is mirrored by β1 [β2, β3] being decreasing in µ. For n = 1, (6a)
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already appears in Meyer (1987) who shows that DARA of u has its counterpart in the MRS between
µ and σ being decreasing in µ in the two-parameter approach. Lajeri and Nielsen (2000) and Eichner
and Wagener (2003a) extend this result to prudence (n = 2).

Remark 2. For the EU framework, Kimball (1990) has shown that preferences exhibit DARA if
and only if the Arrow-Pratt measure of risk aversion B1 exceeds the measure of prudence B2. The
following result shows that this observation straightforwardly extends to the (µ, σ)-approach and to
measures of higher order:

Corollary 1. Suppose that Bn(y) > 0. Then

Bn(y) ≤ Bn+1(y) ∀y ∈ Y ⇐⇒ βn(µ, σ) ≤ βn+1(µ, σ) ∀(µ, σ) ∈ M. (7)

Proof: The RHS of (6a) can be written as ∂ βn/∂ µ = −
(

∂ n+1U
∂ µn+1 /∂ nU

∂ µn

)
· (βn − βn+1). Calculate that

B′
n(y) = Bn(y) · (Bn(y)−Bn+1(y)). Now utilize (2a) and (6a). �

Thus, assertions such as “Risk aversion decreases if and only if risk aversion exceeds prudence” and
their kindred also make sense in the two-parameter approach.

Remark 3. Following Caballé and Pomansky (1996), a smooth utility function u on R+ is said to
exhibit mixed risk aversion iff its derivatives alternate in sign:

(−1)n · u(n)(y) ≤ 0 ∀ y > 0,∀n ∈ N. (8)

Using (2a), mixed risk aversion (8) has a straightforward analogue in the two-parameter approach,
namely (−1)n · (∂ nU/∂ µn) ≤ 0 for all (µ, σ) ∈ M and all n ∈ N. Caballé and Pomansky (1996,
Proposition 3.2) show that (8) is equivalent to all risk measures Bn being non-increasing:

B′
n(y) ≤ 0 ∀ y > 0,∀n ∈ N. (9)

Invoking Proposition 1 and the equivalence between (8) and (9) we obtain a further two-parameter
analogue for mixed risk aversion:

∂ βn(µ, σ)
∂ µ

≤ 0 ∀(µ, σ) ∈ M,∀n ∈ N. (10)

Let us now comment on the second part of Proposition 1: Eq. (6b) reveals an equivalence between
the monotonicity of measures of partial relative risk measures Pn and the monotonicity of βn with
respect to the standard deviation.

Remark 4. Using their definitions, measures Bn and Pn are related by:

∂ Pn(µ, x)
∂ x

= Bn(µ + x) + x ·B′
n(µ + x).

Clearly, B′
n ≤ 0 is sufficient for ∂ Pn/∂ x > 0 if x ≤ 0. Moreover, Hanson and Menezes (1968,

Propositions 1 and 2) show that if one wants Pn to be monotone in x for all x > 0, then this is only
compatible with Bn > 0 if Pn is strictly monotonically increasing: ∂ Pn/∂ x > 0.4 Combined with
(6b) this implies that if we want βn to react uniformly upon changes in σ we are bound to the case
∂ βn/∂ σ > 0.

4Hanson and Menezes (1968) only deal with partial relative risk aversion P1, but their procedure can be extended

to Pn for all n ∈ N.
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Remark 5. As is stressed by Hanson and Menezes (1968) and Menezes and Hanson (1970), fluctu-
ations in the sign of ∂ Pn/∂ x cannot be excluded generally, and monotonicity of ∂ Pn/∂ x thus is an
assumption on its own rather than an artefact of the more basic properties of u(n−1). Interestingly,
this is different for the sign of ∂ βn/∂ σ. One easily shows that ∂ βn/∂ µ < 0 and the curvature prop-
erties of ∂ U (n−1)/∂ µ(n−1), see (2c), together imply ∂ βn/∂ σ > 0.5 Hence, employing (2b) and (6a)
one finds

Corollary 2. For all n ∈ N:

Bn(y) > 0 ∧ B′
n(y) ≤ 0 ∀y ∈ Y =⇒ ∂ βn(µ, σ)

∂ σ
≥ 0 ∀(µ, σ) ∈ M. (11)

E.g., decreasing absolute risk aversion implies that the MRS between µ and σ in U is increasing in
σ (set n = 1). The converse is not true. In applications of the two-parameter approach, the sign
of ∂ β1/∂ σ determines the comparative static effects of optimal risk-taking with respect to increases
in risks (see, e.g., Wagener, 2003) where DARA turns out to be a sufficient (but not a necessary)
condition such that higher riskiness leads to less risk-taking.
Purely in (µ, σ)-terms, (11) can be written as follows:

βn(µ, σ) > 0 ≥ ∂ βn(µ, σ)
∂ µ

∀(µ, σ) ∈ M =⇒ ∂ βn(µ, σ)
∂ σ

≥ 0 ∀(µ, σ) ∈ M,

while the converse does not necessarily hold. For n = 1, 2, this statement has been established by
Lajeri-Chaherli (2003, Proposition 3 and 6). Combined with the equivalence between (8) and (9), we
then obtain that mixed risk aversion (i.e., (−1)n · (∂ nU/∂ µn) ≤ 0 for all (µ, σ) and all n) implies that

∂ βn(µ, σ)
∂ σ

> 0 ∀(µ, σ) ∈ M and ∀n ∈ N.

Remark 6. The previous remarks imply that ∂ βn/∂ σ < 0 can at most be a local property. Re-
versing the inequalities in the proof of (6b) yields that, if ∂ βn/∂ σ < 0 were to hold globally, ∂ Pn/∂ x

would have to be globally decreasing — which is incompatible with Bn(y) > 0. An example that
∂ β1/∂ σ < 0 is indeed feasible locally is provided in Eichner (2000).

Remark 7. In the EU-framework, measures of risk attitudes Bn and Pn and their properties are
useful tools in the analysis of comparative static problems. Quite many of the properties of Bn and Pn

represent utility-theoretic equivalents for certain behavioural responses towards changes in stochastic
or non-stochastic components of the choice problem at hand (see Gollier, 2000, for a survey). Given
the formal equivalences the (µ, σ)-measures βn and their EU-counterparts Bn or Pn one should expect
that the βn inherit at least parts6 of their EU-counterparts’ behavioural implications as well. Some
studies have shown that this is indeed the case:

• Hawawini (1978) graphically shows that DARA in the (µ, σ)-sense of ∂ β1/∂ µ < 0 implies that
wealthier people are willing to accept absolutely higher risks — which is the original idea of
DARA (i.e., B′

1 < 0) in Pratt (1964).

5∂ βn/∂ µ < 0 means ∂ n+1U
∂ σ∂ µn · ∂ nU

∂ µn > ∂ nU
∂ σ∂ µn−1 · ∂ n+1U

∂ µn+1 . Suppose first that ∂ n+1U
∂ µn+1 ≥ 0. Then (2c) implies that

∂ n−1U/∂ µn−1 is concave, meaning that ∂ n+1U
∂ σ2∂ µn−1 · ∂ n+1U

∂ µn+1 ≥
(

∂ n+1U
∂ σ∂ µn

)2
. In this condition replace one of the ∂ n+1U

∂ σ∂ µn

by the expression emerging from ∂ βn/∂ µ < 0 above to obtain that ∂ βn/∂ σ > 0. The case ∂ n+1U
∂ µn+1 ≤ 0 follows along

identical lines, taking into account that inequality signs reverse and that ∂ n−1U/∂ µn−1 is convex now.
6Recall that we confine ourselves to choice problems where all random variables only differ from one another by

location and scale parameters. While innocuous for many economic settings, this restriction reduces comparability

between (µ, σ)- and EU-approach to a strict subset of the problems that can be meaningfully analysed in the EU-

framework.
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• Wagener (2002) shows that absolute prudence in the (µ, σ)-sense of β2 > 0 implies the existence
of a precautionary motive for saving and that decreasing absolute prudence (i.e., ∂ β2/∂ µ < 0)
leads wealthier people to cut back their precautionary saving — which corresponds to Kimball
(1990)’s original concepts of prudence and decreasing absolute prudence in the EU-context.

This brief list is far from completed yet (see also Remark 8 below). Our quite general findings in
Proposition 1 might be instrumental to establish further behavioural equivalences between the two
set-ups.7

5. Normal distribution

We now turn to the special case that stochastics are Gaussian: X ∼ N(0, 1). Given the location-scale
framework, all Y ∈ Y are then normally distributed, too. We find8

Proposition 2.

X ∼ N(0, 1) ⇐⇒ ∂ nU(µ, σ)
∂ σ∂ µn−1

= σ · ∂ n+1U(µ, σ)
∂ µn+1

∀(µ, σ) ∈ M. (12)

Proof: Chipman (1973) shows that X being normally distributed implies Uσ = σUµµ for all (µ, σ),
which corresponds to the RHS of (12) for n = 1. Further differentiation with respect to µ yields the
RHS of (12) for all integers n > 1. Now suppose that the RHS of (12) holds for some arbitrary n ∈ N
(and thus for all larger n). Transform this differential equation as follows (f(x) = F ′(x)):∫ ∞

−∞
xu(n)(µ + σx)dF (x) = σ

∫ ∞

−∞
u(n+1)(µ + σx)dF (x)

⇐⇒ −σ

∫ ∞

−∞

(
u(n+1)(µ + σx)

∫ x

−∞
zf(z)dz

)
dx = σ

∫ ∞

−∞
u(n+1)(µ + σx)f(x)dx

⇐⇒ −
∫ x

−∞
zf(z)dz = f(x) ∀x

=⇒ −xf(x) = f ′(x) ∀x.

The first equivalence comes from integration by parts, using Ex = 0. The final line follows from
differentiating the previous one. Together with the condition that f be a density, it implies that f is
the Gaussian function f(x) = (2π)(−1/2) exp(−x2/2). �

Proposition 2 has interesting implications both for comparative static analysis and for the analysis of
risk attitudes in general.

Remark 8. Eichner and Wagener (2003b, Proposition 1(b)) show that when (µ, σ)-preferences ex-
hibit DARA in the sense of ∂ β1(µ, σ)/∂ µ < 0,

∂ U(µ, σ)
∂ σ

− σ · ∂ 2U(µ, σ)
∂ σ2

> 0 (13)

for all (µ, σ) is a necessary condition such that agents reduce their risk-taking in response to the
addition or increase of an independent background risk to their choice problem; this condition applies

7While the results mentioned only refer to absolute measures of risk attitudes βn, also the relative and partial relative

measures and their properties can be usefully employed in comparative-static analyses. See, e.g., Eichner and Wagener

(2004).
8Chipman (1973, Theorem 1) presents a (mild) regularity condition on u(y) such that a function U(µ, σ) exists that

represents u in the case of normal distributions. We assume this condition to hold.
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for all probability distributions and irrespectively of compatibility between EU- and (µ, σ)-framework.
In case of the normal distribution, Proposition 2 can be applied to rewrite (13) as:

∂ U

∂ σ
− σ · ∂ 2U

∂ σ2
= −σ2 · ∂ 3U

∂ µ2∂ σ
= −σ3 · ∂ 4U

∂ µ4
> 0. (14)

The first of these equalities comes from replacing ∂ U/∂ σ by σ · ∂ 2U/∂ µ2 from (12) for n = 1, and
by observing that ∂ 2U/∂ σ2 = ∂ 2U/∂ µ2 + σ · ∂ 3U/∂ µ2∂ σ from differentiating (12) for n = 1 with
respect to σ. The second equality is then obtained by applying (12) for n = 3.
For cases where (µ, σ)- and EU-approach are compatible, we established in Proposition 1 that the
condition ∂ 4U/∂ µ4 < 0 in (14) is tantamount to absolute temperance (u(4) < 0) which Eeckhoudt
et al. (1996) and Gollier and Pratt (1996) identified to be a prerequisite for independent background
risks to exert a tempering effect on risk taking in the EU-framework. As argued in Eichner and
Wagener (2003b, Proposition 3), the multivariate normal is the only probability distribution such
that EU- and (µ, σ)-approach are compatible in settings with multiple but independent risks. Hence,
the equivalence between (13) and absolute temperance, as established for normal distributions via
Propositions 1 and 2, can be traced back to identical ideas about plausible comparative statics (namely,
that the exposure to additional independent risks makes individuals behave in a more risk-averse
manner).

Remark 9. To solicit further implications of Proposition 2, let us define another class of measures
for risk attitudes by9

β̃n(µ, σ) := −∂ n+1U(µ, σ)
∂ µn+1

/
∂ nU(µ, σ)

∂ µn
(15)

for n ∈ N. Propositions 1 and 2 imply that βn(µ, σ) = σ · β̃n(µ, σ) iff X ∼ N(0, 1). Clearly, βn and
β̃n then also possess identical monotonicity properties with respect to µ. From Corollary 1 we obtain

Corollary 3. Suppose that Bn(y) > 0 for all y ∈ Y. Then:[
Bn(y) ≤ Bn+1(y) ∀y ∈ Y ⇐⇒ β̃n(µ, σ) ≤ β̃n+1(µ, σ) ∀(µ, σ) ∈ M

]
⇐⇒ X ∼ N(0, 1). (16)

While this might more or less look like a technical nicety, Corollary 3 gets greater significance when
seen against the background of the following result:

Proposition 3. (Gollier, 2000, Proposition 23 and p. 116) Suppose that Bn(y) > 0 for all y ∈ Y.
Then

Bn(y) ≤ Bn+1(y) ∀y ∈ Y =⇒ β̃n(µ, σ) ≤ β̃n+1(µ, σ) ∀(µ, σ) ∈ M, (17)

while the converse is generally not true.

Gollier (2000) originally phrases this result in terms of indirect (or derived) utility functions à la
Kihlstrom et al. (1981). Since the function U(µ, σ) formally represents such an indirect utility func-
tion,10 the presentation of Proposition 3 in (µ, σ)-terms is indeed admissible. Corollary 3 then imme-
diately implies that the converse of (17) only holds in the case of Gaussian stochastics.

9Functions such as β̃n are generally inappropriate measures for risk attitudes since they are not immune to arbitrary

monotonic transformations of U . However, if underlying U is a cardinal vNM-utility index u, only positively affine

transformations of U are admissible. In such a case, measures (15) might indeed make sense.
10Given a vNM index u(y) and a random variable z with zero expectation, indirect (or derived) utility is defined as

v(y) := Ezu(y + z). Putting y = µ and x = z/σ, we get that U(µ, σ) = Exu(µ + σx) is an indirect utility function.
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Proposition 3 has several implications (see Gollier, 2000, pp. 115f). E.g., Proposition 3 implies that
DARA is preserved by the addition of an independent background risk. I.e., if an agent becomes
less risk averse upon an increase in non-random wealth, he will exhibit that preference pattern in
the presence of additional background uncertainty, too (Gollier, 2000, Corollary 3). However, since
the converse of Proposition 3 does not generally hold, we cannot infer from an agent behaving in
a decreasingly risk averse manner in the presence of background risks that he exhibits the same
behavioural trait without background risks, too. Corollary 3 demonstrates that such a conclusion is
valid only if stochastics are normally distributed.11

6. Conclusion

Our paper emphasizes strong linkages between the EU- and the two-parameter approach. While such
linkages do not come as entirely surprising in the location/scale-framework, it is still a different task to
pin them down precisely. We achieve this for a wide class of measures for risk attitudes that also have
important applications in comparative static analyses under risk. As the last section reveals, a detour
via the two-parameter approach may yield useful new insights in the more general EU-framework, too.
Finally, as indicated en passant, the formal equivalences established in this paper may be instrumental
for the analysis of comparative-static problems of decision making under risk both in the EU- and the
two-parameter framework.
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Caballé, J., Pomansky, A. (1996): Mixed risk aversion. Journal of Economic Theory 71, 485–513.

Chamberlain, G. (1983): A characterization of the distributions that imply mean-variance utility
functions. Journal of Economic Theory 29, 185–201.

Cheng, H.-C., Magill, M. J., Shafer, W. J. (1987): Some results on comparative statics under uncer-
tainty. International Economic Review 28, 493–507.

Chipman, J. S. (1973): The ordering of portfolios in terms of mean and variance. Review of Economic
Studies 40, 167–190.

Choi, G., Kim, I., Snow, A. (2001): Comparative statics predictions for changes in uncertainty in the
portfolio and savings problems. Bulletin of Economic Research 53, 61–72.

Eeckhoudt, L., Gollier, C., Schlesinger, H. (1996): Changes in background risk and risk taking be-
haviour. Econometrica 64, 683–689.

Eichner, T. (2000): A note on the indifference curves in the (µ, σ)-space. OR Spektrum 22, 491–499.

Eichner, T., Wagener, A. (2004): Relative risk aversion, relative prudence and comparative statics
under uncertainty: the case of (µ, σ)-preferences. Bulletin of Economic Research 56, 159-170.

Eichner, T., Wagener, A. (2003a): More on parametric characterizations of risk aversion and prudence.
Economic Theory 21, 895-900.

11I.e., in the presence of a background risk, final wealth must be normally distributed. In particular, this will be

the case when both primary and background risk are Gaussian. Clearly, this assumption will still keep us within the

location-scale framework.

9



Eichner, T., Wagener, A. (2003b): Variance vulnerability, background risks, and mean variance pref-
erences. The Geneva Papers on Risk and Insurance Theory 28, 173-184.

Gollier, C. (2000): The Economics of Risk and Time, MIT Press: Cambridge, Massachusetts.

Gollier, C., Pratt, J. W. (1996): Risk vulnerability and the tempering effect of background risk.
Econometrica 64, 1109–1123.

Hanson, D. L., Menezes, C. F. (1968): Risk aversion and bidding theory. In: J. P. Quirk, Zarley, A. M.
(eds.), Papers in Quantitative Economics (Vol. 1). The University Press of Kansas: Lawrence etc.,
521–542.

Hawawini, G. A. (1978): A mean-standard deviation exposition of the theory of the firm under
uncertainty: A pedagocial note. American Economic Review 68, 194–202.

Honda, Y. (1985): Downside risk and the competitive firm. Metroeconomica 37, 231–240.

Kihlstrom, R. E., Romer, D., Williams, S. (1981): Risk aversion with random initial wealth. Econo-
metrica 49, 911–920.

Kimball, M. S. (1990): Precautionary saving in the small and in the large. Econometrica 58, 53–73.

Laleri-Chaherli, F. (2003): Partial derivatives, comparative risk behavior and concavity of utility
functions. Mathematical Social Sciences 46, 81–99.

Lajeri, F., Nielsen, L. T. (2000): Parametric characterizations of risk aversion and prudence. Economic
Theory 15, 469–476.

Markowitz, H. M. (1959): Portfolio Selection: Efficient Diversification of Investments, John Wiley &
Sons: New York etc.

Menezes, C. F., Hanson, D. L. (1970): On the theory of risk aversion. International Economic Review
11, 481–487.

Meyer, J. (1987): Two-moment decision models and expected utility maximization. American Eco-
nomic Review 77, 421–430.

Owen, J., Rabinovitch, R. (1983): On the class of elliptical distributions and their applications to the
theory of portfolio choice. Journal of Finance 38, 745–752.

Pratt, J. W. (1964): Risk aversion in the small and in the large. Econometrica 32, 122–136.

Sinn, H.-W. (1983): Economic Decisions under Uncertainty, North-Holland: Amsterdam.

Wagener, A. (2002): Prudence and risk vulnerability in two-moment decision models. Economics
Letters 74, 229-235.

Wagener, A. (2003): Comparative statics under uncertainty: the case of mean-variance preferences.
European Journal of Operational Research 151, 224-232.

10


