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Abstract

In a sequential one-round location game, two firms decide one after the other where to

locate in a given market area in order to attract as many customers as possible. For

various scenarios we establish upper bounds for the first-mover disadvantage which this

game entails. The first-mover should always locate in, or as close as possible to, a center-

point of the market. In convex market areas of two dimensions he can always capture at

least 4/9 of the market. We provide generalizations for markets with higher-dimensionsal

characteristics.

JEL-Classification: R30, C72, D43

Keywords: Location Games, Hotelling Problem, Voronoi Games.



1 Introduction

In a competitive location game, a number of players (e.g., firms, sellers, or political parties)

non-cooperatively decide where to place themselves in some given space with the aim of

attracting as many consumers or voters as possible. “Location” may be understood in

geographical terms as the physical place where a firm, consumer, or facility is situated.

It can also be understood metaphorically as an agent’s position in a political spectrum

(à la Downs, 1957) or in a space of product characteristics (Eiselt et al., 1993). If players

move in a predetermined order the location game is called sequential.

We consider the simplest sequential location game: With the aim of maximizing his

market share, each of two players A and B chooses one site (for a single-good shop, say)

from a given set of potential locations. Player A moves before Player B. Consumers’

locations are invariantly fixed and uniformly distributed over some area. Each consumer

patronizes one store and purchases one item of the good from the seller who is located

closest to him or her.1 Prices are set exogenously and identical at each store.

If the set of possible locations is a closed interval over which consumers’ locations are

uniformly distributed, this problem coincides with Hotelling (1929)’s classical location

problem (without decisions on pricing). In its equilibrium — which involves identical

locational choices both in the simultaneous and in the sequential version of the game

— both players settle in the midpoint of the interval and share the market equally (see

Example 1 in Prescott and Visscher, 1977).2 When departing from the original Hotelling

set-up (i.e., when giving up any of the assumptions two players, locations to be chosen on

a finite line, and uniform consumer distribution), even simple sequential location games

become quite involved. Only little is known about how the game should be played (Ahn

et al., 2004; Economides et al., 2004).

Here, we give up Hotelling’s assumption that locations can only be chosen on a line.

Rather we switch to locations in an (at least two-dimensional) area. Clearly, whenever

the space of locations is not centrally symmetric (and both players are allowed to settle

on top of each other), Player A suffers a first-mover disadvantage: By simply copying

Player A’s locational choice, Player B can always capture the same market share (of
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50%) as Player A — but Player B can generally do better than this, at the detriment

of Player A. The question we try to answer in this paper is: by how much? I.e., we are

interested in the magnitude of the first-mover disadvantage, measured by the difference

between Player B’s and Player A’s equilibrium payoffs.

A possibly surprising answer to this question is that the first-mover disadvantage is

actually not that big. If the space of possible locations is two-dimensional and convex,

it amounts to at most 1/9 of the total market area, i.e., Player A can ensure himself at

least 4/9 of the market space, and the difference to the equal-sharing of markets is just

1/18 of total market.

We arrive at this result by a purely geometric approach, using results from the theory

of centerpoints. The notion of a centerpoint of a set of points (here: locations) in two- or

higher-dimensional space generalizes the concept of the median for a (finite) set on the real

line. The first mover should locate in a centerpoint of the market area (which is unique

in convex-shaped market areas). We then utilize the fact that for every two-dimensional

convex figure any line through the centerpoint partitions the figure into two parts each of

which covers an area of at least 4/9 of the total area.

Our analysis complements recent papers by Chawla et al. (2003, 2006). These studies

establish 1/3 as an upper bound for the first-mover disadvantage in a two-dimensional one-

round location game (generally, it amounts to (d− 1)/(d + 1) for d-dimenional markets).

This bound applies whenever the number of possible locations is finite. We establish the

same bound for sequential location games where the set of potential locations is compact

but infinite and at least covers the full support of the consumers’ locational distribution.

Strengthening the requirements that market areas are convex then narrows down the first-

mover disadvantage to at most 1/9. We provide generalized upper bounds for market areas

of more than two dimensions.

The sequential Hotelling game (without a price subgame) was discussed by Prescott and

Visscher (1977) and Rothschild (1979, 1976), even for more than two firms. However, they

only consider one-dimensional markets (i.e., the set of possible locations is an interval),

where the two-player case is trivial due to symmetry. Adding a price-subgame does

not alter this in the case of two firms (Lane, 1980).3 Here, we analyse non-symmetric
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markets (for two entrants) – which then also results in an unequal split of market shares.

Moreover, our focus is not so much on locational choices but on the (relative) payoffs

which are associated with them.

The rest of the paper is organized as follows: Section 2 sets up the framework. Go-

ing through various scenarios for market shape, Section 3 then provides the results: for

compact market shapes (Player A gets at least a market share of 1/3), triangular markets

(Player A a market share of 4/9), and for convex and bounded markets (Player A gets at

least 4/9). Section 4 briefly concludes.

2 The Model

Let C ⊂ R
d with d ≥ 1 be a compact set over which consumers’ locations are distributed

uniformly;4 we will call C the market area. In large parts of this paper, we assume that

d = 2. The total mass of consumers is normalized to unity. Two sellers, Player A and

Player B, each choose where to locate in L ⊂ R
d. In general, the set of potential locations

L for sales outlets and the market area C need not overlap, but we will most often (and

naturally) assume that the set of possible locations at least fully covers the market area

(i.e., C ⊆ L).

Players move sequentially, starting with Player A. After locations have been chosen,

each consumer buys one unit from the seller whose location is closest to him or her.

Closeness is measured by Euclidean distance. If both sellers’ locations are at equal distance

to his or her location, a consumer randomizes with probability 1/2 over the locations for

his or her purchase. Each seller aims at maximizing his (expected) market share.

With locations a, b ∈ L chosen by Players A and B and with δ(x, y) denoting the

Euclidean distance between x and y (both in R
d),

A(a, b) := {x ∈ C : δ(x, a) < δ(x, b)} ,

B(a, b) := {x ∈ C : δ(x, b) < δ(x, a)} ,

N (a, b) := {x ∈ C : δ(x, a) = δ(x, b)}

measure, respectively, the fraction of consumers who buy from Player A, buy from Player
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B, or randomize between them. Hence, payoffs πi of of Players i = A, B are given by

πA(a, b) =

∫

A(a,b)

dx +
1

2
·

∫

N (a,b)

dx and πB(a, b) =

∫

B(a,b)

dx +
1

2
·

∫

N (a,b)

dx.

Clearly, πA(a, b)+πB(a, b) = 1 for all (a, b) ∈ L2. Moreover, as πi(x, x) = 0.5 for i = A, B

and all x ∈ L and as Player B moves second, he will never do worse than getting half of

the market (provided he behaves rationally, of course). Hence, Player A faces a first-mover

disadvantage.

For Player A’s locational choice a ∈ R
d,

b(a) := arg max
b∈L

πB(a, b)

is Player B’s best-reply correspondence. Player A’s payoff in the (subgame-perfect) Nash

equilibrium of the sequential location game then amounts to

π∗
A = max

a∈L
{πA(a, b) : b ∈ b(a)} .

Since the game is constant-sum, Player A’s equilibrium payoff equals his minimax payoff:

π∗
A = mA := max

a∈L
min
b∈L

πA(a, b).

Player B’s equilibrium payoff amounts to 1−mA such that the first-mover disadvantage,

defined as the difference between the payoffs of the two players, amounts to

D = 1 − 2 · mA.

Chawla et al. (2003) have recently shown that with a finite set of possible locations in

d-dimensional space the first-mover disadvantage is never larger than (d − 1)/(d + 1):

Theorem 1 (Chawla et al., 2003) Suppose that L is a finite set of locations. Player A’s

payoff in the equilibrium of the d-dimensional sequential location game is at least 1/(d+1)

and at most 1/2: For all C ⊂ R
d and all finite L ⊂ R

d,

1

1 + d
≤ mA ≤

1

2
.
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The equilibrium strategy for Player A consists in choosing that point in L that is

closest in Euclidean distance to the set of centerpoints of C. A point a∗ ∈ R
d is called a

centerpoint of a mass distribution in R
d if every closed halfspace H ⊂ R

d that contains

a∗ has mass of at least 1/(d + 1). Specifically, if C is a finite set of n points in R
d, then

a∗ is a centerpoint of C if each closed half-space containing a∗ contains at least n/(d + 1)

points of C (observe that a need not be in C). As a consequence of Helly’s Theorem (see,

e.g., Berger, 1987), each finite set of points in R
d has at least one centerpoint.5

In what follows, we provide a couple of variants for Theorem 1. For some scenarios,

this leads to a considerable strengthening of the lower bound for the first-mover’s maximin

payoff.

3 Results

3.1 Infinitely many locations in compact market areas

We will first consider the case of two-dimensional market areas. Unlike Chawla et al.

(2003) we assume that possible locations include at least the convex hull of the market

area,6

conv(C) ⊆ L.

Hence, there is an infinity of potential locations. Nevertheless, the result below is very

much in line with Chawla et al. (2003)’s finding. It also relies on the notion of centerpoints.

If C is a compact (i.e., bounded and closed) subset of R
d, then any hyperplane through

a centerpoint of C partitions C into two pieces the smallest of which has mass of at least

1/(d+1). Moreover, if C is a convex planar set, the centerpoint of C is the (unique) point

a∗ that maximizes the cut-off area function

φ(a) := min

{
∫

H∩C

dx
∣

∣

∣
H is a halfplane that contains a

}

. (1)

For any bounded (but not necessarily convex) area, a centerpoint exists. I.e., for d = 2,

any straight line through the centerpoint a of C devides C into parts whose mass is at

least 1/3 each. An instructive geometric proof of this theorem can be found in Yaglom

and Boltjanskǐı (1961, Theorem 2.6c (p. 19, pp. 126f)).
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Proposition 1 Suppose that the market area C ⊂ R
2 is bounded and that conv(C) ⊆ L.

Then Player A’s minimax payoff in the two-dimensional sequential location game is at

least 1/3 and at most 1/2:

1

3
≤ mA ≤

1

2
.

Obvious examples where mA = 1/2 in Proposition 1 are markets of centrally symmetric

shape. Here Player A can induce an equal sharing of the market by locating in the center

of symmetry (which is the centerpoint); Player B will simply mimic that. In particular,

Hotelling (1929)’s classical location problem can be understood as the special case of this

where d = 1 and C = L = [0, 1].

The worst case for Player A from Proposition 1 is depicted in Figure 1. It represents

a market where C = {x1, x2, x3} with the mass 1/3 of the consumers in each point, and

L = R
2.

Figure 1 goes here.

Player A’s optimal strategy is to settle in an arbitrary point a of the triangle conv({x1, x2, x3}).

Each of these points is a centerpoint of C = {x1, x2, x3} as every line through it partitions

C into two subsets each of which has a size of at most d/(d + 1) = 2/3. Hence, Player B

can maximally chop off 2/3 of the market by appropriately responding to a. One among

the infinitely many of such responses is indicated by point b in Figure 1; the corresponding

boundary between Player A’s and Player B’s market is given by the solid line, the bisector

of a and b.7,8 If Player A settles outside the triangle conv({x1, x2, x3}), then Player B will,

by locating “between” Player A and the triangle, grab the entire market area. Hence, a

market share of 1/3 is the best Player A can achieve.

The problem depicted in Figure 1 constitutes the limitimg case of Proposition 1. The

formal proof of Proposition 1 is omitted since it is similar to that in Chawla et al. (2003).

Summarizing: with infinitely many locations in a compact market area, 1/3 constitutes

a lower bound for the first-mover’s market share.
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3.2 Triangular market areas

We next consider the sequential location game for triangular-shaped market areas. As we

shall argue later, this establishes the limiting case of Proposition 3 to be derived below.

Proposition 2 Suppose that the market area C is a (non-degenerate and bounded) trian-

gle in R
2 and that C ⊂ L. Player A’s minimax payoff in the two-dimensional sequential

location game is mA = 4/9. Player A chooses the centerpoint of C as his location.

Proof: Without loss of generality choose C to be an equilateral triangle; by an appro-

priate affine transformation any triangle can be mapped into an equilateral one.9 Figure 2

depicts an equilateral triangle C = conv({x1, x2, x3}):

Figure 2 goes here.

In a triangle, medians are concurrent in the centerpoint and are each divided by the

centerpoint in a ratio of 2/3 : 1/3, as measured from the vertices. Hence, cutting through

the centerpoint and parallel to a vertex of the triangle cuts off a smaller triangle from the

original triangle whose area is 4/9 of the full triangle.

Suppose that Player A has chosen the centerpoint a of C as his location. Any choice

b of Player B yields a bisector of a and b as the boundary between the players’ market

areas. Obviously, by moving b closer to a (in the sense that the bisector between b and a

moves, in a parallel way, closer to a), Player B can increase his market share. Essentially,

Player B has to find that line through a that cuts off as large a share of the market as

possible. By reasons of symmetry, any such cut can be executed as indicated by line

ℓ, hitting the vertices of the market at r and q. By cutting along the median (line ℓ′

through x2 and t, the midpoint of x1x3), the market will be shared equally. Now rotate ℓ′

downwards to ℓ, say. This will increase the fraction of the market that is below the cut by

the area of the quadrilateral rtx′
2q

′, where x′
2 and q′ are the symmetric images of x2 and

q with respect to a. The quadrilateral rtx′
2q

′ has the same area as the difference between

the areas ax2q and rat. Extending this argument, the market share below the cut will

then be maximized by the line ℓ′′ that runs parallel to x1x2 through a. The area of the
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trapezoid x1x2pp
′ equals, by construction, 5/9 of the area of the triangle (the triangle

above pp′ contains 4/9 of the area of x1x2x3 since both its base line and its altitude are,

in length, 2/3 of the corresponding lines in the original triangle).

To see why it is indeed Player A’s optimal strategy to locate in the centerpoint a,

note first that it can trivially never be optimal for A to locate outside C.10 Next assume

that A locates inside C but not at its centerpoint. This offers Player B the opportunity

to divide the market parallel to that side of the triangle that has the largest distance

from Player A’s location. Player B would gather a trapezoid which has, when compared

to trapezoids that can be cut off by lines through the centerpoint a, the same base line

x1x2 = x2x3 = x1x3, but a greater altitude than x1x2pp
′ — and consequently a larger

size. Evidently, this would harm Player A and can, thus, not be optimal. •

3.3 Bounded and convex market areas

The following result shows that Proposition 1 can be considerably sharpened if market

areas are restricted to be convex:

Proposition 3 Suppose that C ⊂ R
2 is a bounded and convex set. Moreover, assume

that C ⊂ L. Player A’s minimax payoff in the two-dimensional sequential location game

is at least 4/9 and at most 1/2:

4

9
≤ mA ≤

1

2
.

The proof follows from a nice geometric result attributed to Winternitz by Yaglom and

Boltjanskǐı (1961, p. 36). This result shows that the triangular market area discussed in

the previous section and its attending minimax payoff of 4/9 indeed constitute a limiting

case for all bounded and convex figures:11

Theorem 2 (Winternitz) For any bounded and convex planar body C with unit area

and any halfplane H that contains the centerpoint of C, the area of H ∩C is at least 4/9.

The proof of this theorem — a rigorous version of which is in Yaglom and Boltjanskǐı

(1961, pp. 160-162) — can be outlined with the help of Figure 3:
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Figure 3 goes here.

Suppose the market land is given by the boldly surrounded area C; clearly this is

bounded and convex. Suppose further that the centerpoint of C is a. Consider any cut

through a; for example consider the vertical cut indicated by the line ℓ. Any such cut

divides the market area into two parts; given our vertical cut, we call them the left-hand

and the right-hand part of C. The dividing line ℓ cuts the boundaries of C at (precisely)

two points; call them y and z. Replace now the left-hand part of C by a triangle with

vertices x1, y, and z, such that (i) y and z are the points of intersection of ℓ with the

boundary of C and (ii) the triangle has an area equal to that of the left-hand part of

C. Next replace the right-hand part of C by a trapezoid yx2x3z such that (i) the line

segment yz is the smaller base, (ii) points x2 and x3 lie on the straight lines x1y and x1z,

respectively, and (iii) the area of the trapezoid equals that of the right-hand part of C.

By construction, we now obtain a triangle conv{x1x2x3} that has the same size as the

market land C.

Consider now the centerpoint of the triangle conv({x1x2x3}); call it a′. It can be shown

(actually, that is the crucial step) that a′ lies in the left-hand part of the original market

area C. Now divide the triangle into two pieces (a smaller triangle and a trapezoid) by

a cut through a′ that runs to the left and parallel to ℓ (and, thus, also to x2x3). In our

case, this will result in a vertical line ℓ′. We know from Proposition 2 that this cut divides

the area of the large triangle conv({x1x2x3}) into two parts with proportions 4/9 to 5/9.

Also the original cut ℓ partitions the triangle conv({x1x2x3}). As ℓ runs to the right of

ℓ′, the proportion of the areas of the left-hand part conv({x1yz}) and of the right-hand

part conv({yx2x3z}) cannot be larger than 4/9 : 5/9. Given that these areas are, by

construction, identical to those left over by the division ℓ of the original market area C,

we have established that any division through a centerpoint of C leaves the smaller area

with a size of at least 4/9 of the total market area.

From Proposition 3, the first-mover disadvantage in the sequential location game can

be narrowed down to a mere D = 1/9 in the case of convex market areas. This bound is

surprisingly general — and surprisingly small, both in absolute terms and relative to the

value of 1/3 established in Chawla et al. (2003) and Section 3.1.
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3.4 Higher dimensions

In a purely spatial interpretation of our set-up, only two dimensional market areas are rel-

evant. As mentioned in the introduction, the theory of locational choice may be also used

metaphorically in policy or attribute spaces. Here, the dimensionality is not clear, but

often larger than two. Fortunately, Winternitz’ Theorem was generalized to an arbitrary

fixed number of dimensions by Grünbaum (1960):

Theorem 3 (Grünbaum, 1960) Let K be a bounded and convex body in Euclidean d-

space with a unit volume (measure). Then any hyperplane through the centerpoint of K

partitions K into two subsets K1 and K2 whose volumes V (Ki) satisfy12

V (Ki) ≥

(

d

d + 1

)d

(i = 1, 2).

This result can readily be used to extend Proposition 3:

Proposition 4 Suppose that C ⊂ R
d is a bounded and convex set. Moreover, assume

that C ⊂ L. Player A’s minimax payoff in the d-dimensional sequential location game is

at least [d/(1 + d)]d and at most 1/2:

(

d

1 + d

)d

≤ mA ≤
1

2
.

Player A can realize this payoff by locating in the centerpoint of C.

Since [d/(1+d)]d > 1/(1+d) for all d > 1, the lower bound for Player A’s market share

is higher than in Chawla et al. (2003)’s theorem for finite sets of locations. Moreover,

as ((d + 1)/d)d < e for all d (with e as Euler’s number), Player A can secure himself at

least a market share of e−1 ≃ 0.368 in market spaces of arbitrary dimensions. This is in

marked contrast to Chawla et al. (2003) where the first-mover’s market share potentially

approaches zero in high-dimensional markets.
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4 Conclusion

We provide upper bounds of the first-mover disadvantage in sequential one-round location

games for various scenarios. For convex market areas of dimension d, this disadvantage

amounts to a fraction of at most D = 1 − 2(d/(d + 1))d of the market, which ranges

between 1/9 for d = 2 and 1 − 2e−1 ≃ 0.264 for large dimensions. The disadvantage

is larger the higher is market dimensionality. The optimal strategy for the first-moving

Player A is to always locate in the centerpoint of the distribution of consumers, and the

second-moving Player B will settle close to him. In that sense, Hotelling’s intuition that

firms should locate “in the middle” of the market goes through.

An obvious question for further research is the derivation of minimax payoffs and

strategies in location games with several rounds. Apart from some special cases (see,

e.g., Ahn et al., 2004; Chawla et al., 2003) not much is known so far about these games.

Potentially, the geometric route taken in this paper also yields insights for this more

advanced question.
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Grünbaum, B. (1960), “Partitions of Mass-Distributions and of Convex Bodies by Hyper-

planes”, Pacific Journal of Mathematics 10, 1257-1261.

Lane, W.J. (1980), “Product Differentiation in a Market with Endogenous Sequential

Entry”, Bell Journal of Economics 11, 237-260.

12



Prescott, Edward C., and Visscher, Michael (1977), “Sequential Location Among Firms

with Foresight”, Bell Journal of Economics 8, 378-393.

Rothschild, Robert (1976), “A Note on the Effect of Sequential Entry on Choice of Loca-

tion”, Journal of Industrial Economics 24, 313-320.

Rothschild, Robert (1979), “The effect of Sequential Entry on Choice of Location”, Eu-

ropean Economic Review 12, 227-241.

Yaglom, Isaac M. and Vladimir G. Boltjanskǐı (1961), Convex Figures. New York: Holt,

Rinehart & Whinston.

13



Endnotes

1If the set of locations is continuous and consumers are uniformly distributed over some compact set,

sequential location games are also called Voronoi games; we are, thus, considering a one-round Voronoi

game (see Cheong et al., 2004).

2This assumes that firms can locate on top of one another. If that is not feasible, the first-mover settles

in the midpoint of the interval and the other firm locates at an epsilon distance from the midpoint.

3Economides et al. (2004) show, however, that with a price subgame the ordering of profits follows

the ordering of entries.

4Unlike in Hotelling’s model with a location and a price subgame (see Anderson and Goeree, 1997),

the uniformity assumption can be easily relaxed.

5The same holds for continuous mass distributions over R
d as well as for arbitrary Borel probability

measures on R
d.

6The convex hull for a set C of points in a real vector space is the minimal convex set containing C;

we denote it as convC. Recall that for x1, x2, x3 ∈ R
2, the set conv({x1, x2, x3}) gives the triangle with

vertices x1, x2, and x3.

7Given a metric δ, the bisector of any two distinct points a, b ∈ R
d consists of all points x ∈ R

d such

that δ(a, x) = δ(b, x). With δ as the Euclidean metric, the bisector of a and b is a hyperplane that is

normal to the line ab and passes through its midpoint.

8Observe that the argument also goes through if Player A locates at one of the vertices of conv({x1, x2, x3}).

9In particular, the midpoints of the sides, the medians, and the centerpoint of the original triangle

will be mapped into the midpoints, the medians, and the centerpoint of the equilateral triangle. All area

ratios will remain unchanged.

10By the hyperplane separation theorem, any triangle can be strictly separated from any point outside

it. This means that πA = 0 as Player B could capture the whole market.

11In terms of the cut-off area function (1), one can phrase Winternitz’ Theorem as follows: For any

bounded and convex planar body C, φ(a∗) = 4/9 where a∗ is the centerpoint of C.

12Equality holds here if, and only if, K is a cone with the hyperplane being parallel to the base and

Ki is that subset of K that contains the base.
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Figure 1: C = {x1, x2, x3}. Player A gets 1/3 of the market.
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Figure 2: C = conv{x1, x2, x3}: Player A gets 4/9 of the market.
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Figure 3: Illustration of Winternitz’ result.
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